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Abstract 

In this article, Bayesian analysis of parameter (θ   of Poisson 

distribution under simulated data is conducted. Posterior 

distributions are obtained under two informative (Gamma and 

Exponential  and two non-informative (Uniform and Jaffrey’s  

priors. Five loss functions including Square Error Loss Function 

(SELF , Weighted Square Error Loss Function (WSELF , LINEX 

Loss Function (LLF , Quasi Quadratic Loss Function (QQLF  and 

Precautionary Loss Function (PLF  are used to obtain the Bayes 

estimators and risks associated with them to study the performance 

and behavior of the Poisson parameter (θ . From this simulation 

study we found that gamma distribution is suitable prior for 

Poisson and Quasi Quadratic Loss Function provides efficient 

results compared to other Loss functions with minimum risks 

associated with these estimates.

  

 

Introduction 

The Poisson distribution was first introduced by Simeon Denis Poisson (1781-1840  and published, 

together with his probability theory, in 1837 in his work research on the probability of judgments in 

criminal and civil matters. The work focused on certain random variables N that count, among other 

things, the number of discrete occurrences (sometimes called ‘events’ or ‘arrivals’  that take place    
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during a time-interval of given length. A practical application of this distribution was made by Ladislaus 

Bortkiewicz in 1898 when he was given the task of investigating the number of soldiers in the Prussian 

army killed accidentally by horse kicks; this experiment introduced the Poisson distribution to the field 

of reliability engineering. It fits well when the occurrences of the events are rare, so it is also known as 

probability distribution of rare events.  

 A discrete random variable X is said to have a Poisson distribution with parameter λ>0, if for 

k=0,1,2,3,… the probability mass function of X is given by: 

f(k; λ) = Pr(X = k) =
λke−λ

k!
 ; λ > 0 

Where e is the base of the natural logarithm (e=2.71828…  and k! is the factorial of k. The positive real 

number λ is equal to the expected value of X and also to its variance i.e. 

λ = E(X) = Var(X) 

Lim et al. (2001  provided a practical simulation-based Bayesian Analysis of parameter-driven models 

for time series Poisson data with the AR (1  latent process. Fujisaki et al. (2008  considered jump 

diffusion processes with compound Poisson process whose jump ranges follow the normal or double 

exponential distributions and also their Bernoulli approximations. Raftery et al. (1986  discussed a 

Bayesian approach to estimation and hypothesis testing for a Poisson process with a change-point is 

developed. Although several research papers have appeared on parameter of Poisson distribution but 

not much attention has been paid on Bayesian analysis of parameter of Poisson distribution. The main 

aim of this paper is to study the performance and behavior of parameter of Poisson under different loss 

functions using informative and non-informative priors. 

Materials and Methods: Derivations of Posterior distributions, Prior predictive distributions, Bayes 

estimators and Bayes risk functions using four different prior distributions are presented in this section. 

Likelihood Function 

 In this subsection, the likelihood function of Poisson distribution has been derived. 

The probability mass function of Poisson distribution for a random variable X is: 

f(x, θ) =
e−θθx

x!
            , x = 0,1,2,3,… 

Where is the unknown parameter of the distribution with which we are concerned? 

The likelihood function is: 

L(x, θ) =
e−nθθ∑ xi

n
i=1

∏ xi!
n
i=1
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Posterior Distributions: Two non-informative and two informative priors are used to derive the 

posterior distributions and are presented in this section. 

Gamma Prior 

The p.d.f of gamma prior with hyperparameters a and b is given by: 

P(θ) =
ba

⌈a
θa−1e−bθ            ,0 < θ < ∞ 

The posterior distribution is: 

P(θ|x) =
βα

⌈α
θα−1e−βθ 

Where   α = ∑ xi
n
i=1 + a  and  β = b + n. 

 

Exponential Prior 

The p.d.f of exponential prior with hyperparameter a is given as: 

P(θ) = ae−aθ          , 0 < θ < ∞  

The posterior distribution is: 

P(θ|x) =
βα

⌈α
θα−1e−βθ 

Where α = ∑ xi
n
i=1 + 1 and β = a + n. 

Uniform Prior 

The p.d.f of uniform prior is given as: 

P(θ) = 1             , 0 < θ < 1 

The posterior distribution is: 

P(θ|x) =
βα

⌈α
θα−1e−βθ 

Where α = ∑ xi
n
i=1 + 1 and  β = n. 

Jeffery’s Prior 

The p.d.f of Jeffery’s prior is given as: 
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P(θ) ∝
1

θ
1
2

             , 0 < θ < ∞ 

The posterior distribution is: 

P(θ|x) =
βα

⌈α
θα−1e−βθ 

Where α = ∑ xi
n
i=1 +

1

2
 and β = n. 

Prior Predictive Distributions: In this subsection, prior predictive distributions under different 

informative and non-informative priors have been presented. 

Gamma Prior 

The prior predictive distribution using gamma prior is given as: 

P(y) =
ba⌈(a + y)

⌈a(b + 1)a+yy!
 

 

Exponential Prior 

The prior predictive distribution using exponential prior is given as: 

P(y) =
a

(a + 1)y+1
 

Uniform Prior 

The prior predictive distribution using uniform prior is given as: 

P(y) = ∫ 1.
θye−θ

y!
dθ

∞

0

= 1 

Jeffery’s Prior 

The prior predictive distribution using Jeffery’s prior is given as: 

P(y) =
⌈(y +

1
2)

y!
 

Bayes Estimators and Corresponding Risk Functions: This section discusses the derivation of Bayes 

estimators and corresponding posterior risks under different loss functions. The Bayes estimators are 

evaluated under Square Error Loss Function (SELF , Weighted Square Error Loss Function (WSELF , 

LINEX Loss Function (LLF , Quasi Quadratic Loss Function (QQLF  and Precautionary Loss Function 
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(PLF . The Bayes estimators and corresponding Posterior risks under different loss functions are 

presented in the following table. 

Table 1: Bayes Estimators and corresponding Posterior risks under different loss functions 

Loss Function = L(θ, θ∗  Bayes Estimator Posterior Risk 

SELF: (θ − θ∗)2 E(θ|x) Var(θ|x) 

WSELF: θ−2(θ − θ∗)2 E(θ−1|x)

E(θ−2|x)
 1 − [

 {E(θ−1|x)}2

{E(θ−2|x)}
] 

LLF: ec(θ∗−θ) − c(θ∗ − θ) − 1 
−

1

c
log{E(e−cθ)} 

log{E(e−cθ)} + cE(θ|x)(θ) 

QQLF: (e−cθ∗
− e−cθ)

2
 −

1

c
log{E(e−cθ)} 

e−2cθ∗
+ E(e−2cθ) − 2e−cθ∗

E(e−cθ) 

PLF: 
(θ∗−θ)2

θ∗  
[E(θ|x)(θ

2)]

1
2
 2 [{E(θ2)}

1
2 − E(θ)] 

 

Gamma Prior 

The Bayes estimators and corresponding risks using gamma prior under different loss functions are 

presented in the following table: 

Table 2: Bayes Estimators and corresponding risks under Gamma Prior. 

Loss 

Function 

Bayes Estimator Bayes Risk 

SELF ∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎  

𝑏 + 𝑛
 

∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎  

(𝑏 + 𝑛)2
 

WSELF ∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎 − 2 

𝑏 + 𝑛
 

1

∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎 − 1

 

LLF 
−

1

𝑐
𝑙𝑛 (

𝑏 + 𝑛

𝑏 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +𝑎 𝑙𝑛 (

𝑏 + 𝑛

𝑏 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +𝑎 + 𝑐 (

∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎

𝑏 + 𝑛
) 

QQLF 
−

1

𝑐
𝑙𝑛 (

𝑏 + 𝑛

𝑏 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +𝑎 (

𝑏 + 𝑛

𝑏 + 𝑛 + 2𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +𝑎 − (

𝑏 + 𝑛

𝑏 + 𝑛 + 𝑐
)
2[∑ 𝑥𝑖

𝑛
𝑖=1 +𝑎]
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PLF 
[(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑎 + 1)(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑎)]

1
2

𝑏 + 𝑛
 2 [

[(∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑎 + 1)(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑎)]

1
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑎)

𝑏 + 𝑛
] 

 

Exponential Prior 

The Bayes estimators and corresponding risks using exponential prior under different loss functions are 

presented in the following table: 

Table 3: Bayes Estimators and corresponding risks under Exponential Prior. 

Loss 

Function 

Bayes Estimator Bayes Risk 

SELF ∑ 𝑥𝑖
𝑛
𝑖=1 + 1  

𝑎 + 𝑛
 

∑ 𝑥𝑖
𝑛
𝑖=1 + 1  

(𝑎 + 𝑛)2
 

WSELF ∑ 𝑥𝑖
𝑛
𝑖=1 − 1 

𝑎 + 𝑛
 

1

∑ 𝑥𝑖
𝑛
𝑖=1

 

LLF 
−

1

𝑐
𝑙𝑛 (

𝑎 + 𝑛

𝑎 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 𝑙𝑛 (

𝑎 + 𝑛

𝑎 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 + 𝑐 (

∑ 𝑥𝑖
𝑛
𝑖=1 + 1

𝑎 + 𝑛
) 

QQLF 
−

1

𝑐
𝑙𝑛 (

𝑎 + 𝑛

𝑎 + 𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 (

𝑎 + 𝑛

𝑎 + 𝑛 + 2𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1

− (
𝑎 + 𝑛

𝑎 + 𝑛 + 𝑐
)
2[∑ 𝑥𝑖

𝑛
𝑖=1 +1]

 

 

PLF 
[(∑ 𝑥𝑖

𝑛
𝑖=1 + 2)(∑ 𝑥𝑖

𝑛
𝑖=1 + 1)]

1
2

𝑎 + 𝑛
 2 [

[(∑ 𝑥𝑖
𝑛
𝑖=1 + 2)(∑ 𝑥𝑖

𝑛
𝑖=1 + 1)]

1
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 + 1)

𝑎 + 𝑛
] 

 

Uniform Prior 

The Bayes estimators and corresponding risks using uniform prior under different loss functions are 

presented in the following table: 
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Table 4: Bayes Estimators and corresponding risks under Uniform Prior. 

Loss 

Function 

Bayes Estimator Bayes Risk 

SELF ∑ 𝑥𝑖
𝑛
𝑖=1 + 1  

𝑛
 

∑ 𝑥𝑖
𝑛
𝑖=1 + 1  

𝑛2
 

WSELF ∑ 𝑥𝑖
𝑛
𝑖=1 − 1 

𝑛
 

1

∑ 𝑥𝑖
𝑛
𝑖=1

 

LLF 
−

1

𝑐
𝑙𝑛 (

𝑛

𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 𝑙𝑛 (

𝑛

𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 + 𝑐 (

∑ 𝑥𝑖
𝑛
𝑖=1 + 1

𝑛
) 

QQLF 
−

1

𝑐
𝑙𝑛 (

𝑛

𝑛 + 𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 (

𝑛

𝑛 + 2𝑐
) ∑ 𝑥𝑖

𝑛
𝑖=1 +1 − (

𝑛

𝑛 + 𝑐
)
2[∑ 𝑥𝑖

𝑛
𝑖=1 +1]

 

PLF 
[(∑ 𝑥𝑖

𝑛
𝑖=1 + 2)(∑ 𝑥𝑖

𝑛
𝑖=1 + 1)]

1
2

𝑛
 2 [

[(∑ 𝑥𝑖
𝑛
𝑖=1 + 2)(∑ 𝑥𝑖

𝑛
𝑖=1 + 1)]

1
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 + 1)

𝑛
] 

 

Jeffery’s Prior 

The Bayes estimators and corresponding risks using Jeffery’s prior under different loss functions are 

presented in the following table: 

Table 5: Bayes Estimators and corresponding risks under Jeffery&#39;s Prior. 

Loss 

Function 

Bayes Estimator Bayes Risk 

SELF ∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2  

𝑛
 

∑ 𝑥𝑖
𝑛
𝑖=1 +

1  
2

𝑛2
 

WSELF ∑ 𝑥𝑖
𝑛
𝑖=1 −

3
2 

𝑛
 

1

∑ 𝑥𝑖
𝑛
𝑖=1 −

1
2

 

LLF 
−

1

𝑐
𝑙𝑛 (

𝑛

𝑛 + 𝑐
) 

∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2 

𝑙𝑛 (
𝑛

𝑛 + 𝑐
) 

∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2 + 𝑐 (

∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2

𝑛
) 

QQLF 
−

1

𝑐
𝑙𝑛 (

𝑛

𝑛 + 𝑐
) 

∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2 (

𝑛

𝑛 + 2𝑐
) 

∑ 𝑥𝑖
𝑛
𝑖=1 +

1
2 − (

𝑛

𝑛 + 𝑐
)
2[∑ 𝑥𝑖

𝑛
𝑖=1 +

1
2
]
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PLF 

[(∑ 𝑥𝑖
𝑛
𝑖=1 +

3
2
) (∑ 𝑥𝑖

𝑛
𝑖=1 +

1
2
)]

1
2

𝑛
 2

[
 
 
 
 
[(∑ 𝑥𝑖

𝑛
𝑖=1 +

3
2
) (∑ 𝑥𝑖

𝑛
𝑖=1 +

1
2
)]

1
2
− (∑ 𝑥𝑖

𝑛
𝑖=1 +

1
2
)

𝑛

]
 
 
 
 

 

 

Results 

The Bayes estimates alongside corresponding risks for different loss functions (SELF, LLF, WSELF, 

QQLF, PLF  under gamma, exponential, uniform and Jeffery’s priors using complete data have been 

presented. The simulation has been carried out for 𝜃=0.5, 1 and 2 with sample sizes 20, 50, 100, 150 

and 500. The risks associated with each estimate have also been presented in the tables. The 

performance of these estimates has been compared in terms of risks associated with each estimate. 

Table 6: Simulation using Bayes Estimators and Risks under Gamma Prior for Simulated Data (θ =

0.5) 

Sample 

Size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.485242 

(0.0240993  

0.385912 

(0.114020  

0.473577 

(0.0116650  

0.473577 

(0.00858639  

0.509469 

(0.0484549  

50 

0.477753 

(0.00952932  

0.437861 

(0.0435688  

0.479235 

(0.00476371  

0.479235 

(0.00357987  

0.518255 

(0.0197542  

100 

0.497839 

(0.00497168  

0.477866 

(0.0204703  

0.495370 

(0.00246941  

0.495370 

(0.00181430  

0.508255 

(0.00993746  

150 

0.505287 

(0.00336555  

0.491966 

(0.0133580  

0.503612 

(0.00167534  

0.503612 

(0.00121504  

0.508606 

(0.00663886  

500 

0.501567 

(0.00100286  

0.497568 

(0.00400238  

0.501066 

(0.000500764  

0.501066 

(0.000366863  

0.502566 

(0.00199747  
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Table 7: Simulation using Bayes Estimators and Risks under Gamma Prior for Simulated Data (θ = 1) 

Sample 

Size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.941253 

(0.0467469  

0.841924 

(0.0557035  

0.918625 

(0.0226273  

0.918625 

(0.00691014  

0.965766 

(0.0490262  

50 

1.00643 

(0.0200743  

0.966534 

(0.0202195  

0.996520 

(0.00990564  

0.996520 

(0.00265583  

1.01635 

(0.0198483  

100 

0.995450 

(0.00994107  

0.975477 

(0.0101338  

0.990512 

(0.00493769  

0.990512 

(0.00135081  

1.00043 

(0.00996159  

150 

0.992121 

(0.00660819  

0.978800 

(0.00675894  

0.988832 

(0.00328950  

0.988832 

(0.000905429  

0.995446 

(0.00664953  

500 

1.00129 

(0.00200204  

0.997292 

(0.00200088  

1.00029 

(0.000999688  

1.00029 

(0.000269979  

1.00229 

(0.00199846  

 

Table 8: Simulation using Bayes Estimators and Risks under Gamma Prior for Simulated Data (θ = 2) 

Sample 

Size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

1.99725 

(0.0991927  

1.89792 

(0.0255006  

1.94924 

(0.0480130  

1.94924 

(0.00191204  

2.02193 

(0.0493596  

50 

2.01441 

(0.0401797  

1.97452 

(0.0100007  

1.99458 

(0.0198266  

1.99458 

(0.00072925  

2.02436 

(0.0198970  

100 

1.98311 

(0.0198043  

1.96313 

(0.00506128  

1.97327 

(0.00983672  

1.97327 

(0.000378802  

1.98809 

(0.00997397  

150 

2.01188 

(0.0134004  

1.99855 

(0.00332167  

2.00521 

(0.00667062  

2.00521 

(0.000241289  

2.01520 

(0.00665516  
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500 

1.99589 

(0.00399070  

1.99189 

(0.00100279  

1.99390 

(0.00199270  

1.99390 

(0.000073842  

1.99689 

(0.00199896  

 

Table 9: Simulation using Bayes Estimators and Risks under Exponential Prior for Simulated Data 

(θ = 0.5) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.537839 

(0.0268647  

0.437940 

(0.102378  

0.524838 

(0.0130012  

0.524838 

(0.00864525  

0.562259 

(0.0488406  

50 

0.529482 

(0.0105854  

0.489499 

(0.0392390  

0.524259 

(0.00522318  

0.524259 

(0.00358461  

0.539386 

(0.0198067  

100 

0.513835 

(0.00513731  

0.493839 

(0.0198437  

0.511284 

(0.00255166  

0.511284 

(0.00181600  

0.518810 

(0.00994981  

150 

0.512321 

(0.00341501  

0.498990 

(0.0131824  

0.510621 

(0.00169996  

0.510621 

(0.00121575  

0.515643 

(0.00664422  

500 

0.503677 

(0.00100731  

0.499677 

(0.00398647  

0.503174 

(0.000502986  

0.503174 

(0.000366941  

0.504676 

(0.00199794  

 

Table 10: Simulation using Bayes Estimators and Risks under Exponential Prior for Simulated Data 

(θ = 1) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.996465 

(0.0497728  

0.896566 

(0.0527719  

0.972377 

(0.024876  

0.972377 

(0.00661307  

1.02113 

(0.0493386  

50 

1.02867 

(0.0205651  

0.988690 

(0.0198198  

1.01853 

(0.0101475  

1.01853 

(0.00260400  

1.03862 

(0.0198957  
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100 

1.00656 

(0.0100636  

0.986568 

(0.0100324  

1.00157 

(0.00499851  

1.00157 

(0.00133761  

1.01155 

(0.00997327  

150 

0.999528 

(0.00666262  

0.986197 

(0.00671369  

0.996212 

(0.00331658  

0.996212 

(0.000899527  

1.00286 

(0.00665469  

500 

1.00351 

(0.00200695  

0.999515 

(0.00199689  

1.00251 

(0.00100214  

1.00251 

(0.000269441  

1.00451 

(0.00199892  

 

Table 11: Simulation using Bayes Estimators and Risks under Exponential Prior for Simulated Data 

(θ = 2) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

2.05852 

(0.102822  

1.95862 

(0.0248681  

2.00876 

(0.0497606  

2.00876 

(0.00176152  

2.08334 

(0.0496500  

50 

2.04947 

(0.0409728  

2.00949 

(0.00985075  

2.02925 

(0.0202174  

2.02925 

(0.000694031  

2.05944 

(0.0199434  

100 

1.99535 

(0.0199495  

1.97536 

(0.00503586  

1.98544 

(0.00990875  

1.98544 

(0.000372418  

2.00035 

(0.00998548  

150 

2.02006 

(0.0134653  

2.00673 

(0.00331070  

2.01336 

(0.00670287  

2.01336 

(0.000238539  

2.02339 

(0.00666028  

500 

1.99834 

(0.00399652  

1.99434 

(0.00100179  

1.99635 

(0.00199560  

1.99635 

(0.000073588  

1.99934 

(0.00199942  
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Table 12: Simulation using Bayes Estimators and Risks under Uniform Prior for Simulated Data (θ =

0.5) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.538384 

(0.0269192  

0.438384 

(0.102378  

0.525357 

(0.0130271  

0.525357 

(0.00865319  

0.562829 

(0.0488901  

50 

0.529697 

(0.0105939  

0.480808 

(0.0399355  

0.524470 

(0.00522739  

0.524470 

(0.00358596  

0.539604 

(0.0198147  

100 

0.513939 

(0.00513939  

0.493939 

(0.0198437  

0.511387 

(0.00255269  

0.511387 

(0.00181635  

0.518915 

(0.00995182  

150 

0.512391 

(0.00341594  

0.499057 

(0.0131824  

0.510690 

(0.00170042  

0.510690 

(0.00121591  

0.515713 

(0.00664512  

500 

0.503697 

(0.00100739  

0.499697 

(0.00398647  

0.503194 

(0.000503026  

0.503194 

(0.000366956  

0.504696 

(0.00199802  

 

Table 13: Simulation using Bayes Estimators and Risks under Uniform Prior for Simulated Data (θ =

1) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.997475 

(0.0498737  

0.897475 

(0.0527719  

0.973339 

(0.0241356  

0.973339 

(0.00661342  

1.02217 

(0.0493886  

50 

1.02909 

(0.0205818  

0.989091 

(0.0198198  

1.01894 

(0.0101557  

1.01894 

(0.00260396  

1.03904 

(0.0199038  

100 

1.00677 

(0.0100677  

0.986768 

(0.0100324  

1.00177 

(0.00500053  

1.00177 

(0.00133761  

1.01176 

(0.00997529  

150 0.999663 0.986330 0.996346 0.996346 1.00299 
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(0.00666442  (0.00671369  (0.00331747  (0.000899528  (0.00665559  

500 

1.00356 

(0.00200711  

0.999556 

(0.0019968  

1.00255 

(0.00100222  

1.00255 

(0.000269441  

1.00456 

(0.00199900  

 

Table 14: Simulation using Bayes Estimators and Risks under Uniform Prior for Simulated Data (θ =

2) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

2.06061 

(0.103030  

1.96061 

(0.0248681  

2.01075 

(0.0498599  

2.01075 

(0.00175809  

2.08546 

(0.0497003  

50 

2.05030 

(0.0410061  

2.01030 

(0.00985075  

2.03007 

(0.0202337  

2.03007 

(0.000693464  

2.06028 

(0.0199515  

100 

1.99576 

(0.0199576  

1.97576 

(0.00503586  

1.98584 

(0.00991276  

1.98584 

(0.000372271  

2.00075 

(0.00998750  

150 

2.02034 

(0.0134689  

2.00700 

(0.00331070  

2.01363 

(0.00670467  

2.01363 

(0.000238474  

2.02367 

(0.00666118  

500 

1.99842 

(0.00399685  

1.99442 

(0.00100179  

1.99643 

(0.00199576  

1.99643 

(0.000073582  

1.99942 

(0.00199950  

 

Table 15: Simulation using Bayes Estimators and Risks under Jaffrey’s prior for Simulated Data (θ =

0.5) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.513384 

(0.0256692  

0.413384 

(0.107902  

0.500962 

(0.0124222  

0.500962 

(0.00865901  

0.537803 

(0.0488385  

50 0.519697 0.479697 0.496566 0.496566 0.511417 



A Bayesian Look at The Rare Event Distribution  Zahoor & Javaid 

56 
 

(0.0103939  (0.0400243  (0.00494927  (0.00358906  (0.0198045  

100 

0.508939 

(0.00508939  

0.488939 

(0.0200425  

0.506412 

(0.00252786  

0.506412 

(0.00181662  

0.513915 

(0.00995135  

150 

0.509057 

(0.00339371  

0.495724 

(0.0132699  

0.507368 

(0.00168935  

0.507368 

(0.00121604  

0.512380 

(0.00664498  

500 

0.502697 

(0.00100539  

0.498697 

(0.00399443  

0.502195 

(0.000502028  

0.502195 

(0.000366960  

0.503696 

(0.00199801  

 

Table 16: Simulation using Bayes Estimators and Risks under Jaffrey’s prior for Simulated Data (θ =

1) 

Sample 

Size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

0.972475 

(0.0486237  

0.872475 

(0.0542020  

0.948944 

(0.0235307  

0.948944 

(0.00676618  

0.997161 

(0.0493733  

50 

1.01909 

(0.0203818  

0.979091 

(0.0200182  

1.00903 

(0.0100570  

1.00903 

(0.00262998  

1.02904 

(0.0199028  

100 

1.00177 

(0.0100177  

0.981768 

(0.0100830  

0.996792 

(0.00497569  

0.996792 

(0.00134424  

1.00676 

(0.00997517  

150 

0.996330 

(0.00664220  

0.982997 

(0.00673630  

0.993024 

(0.00330641  

0.993024 

(0.000902495  

0.999658 

(0.00665555  

500 

1.00256 

(0.00200511  

0.998556 

(0.00199889  

1.00155 

(0.00100122  

1.00155 

(0.000269711  

1.00356 

(0.00199900  
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Table 17: Simulation using Bayes Estimators and Risks under Jaffrey’s prior for Simulated Data (θ =

2) 

Sample 

size 

Loss Function 

SELF WSELF LLF QQLF PLF 

20 

2.03561 

(0.101780  

1.93561 

(0.0251812  

1.98635 

(0.0492550  

1.98635 

(0.00182255  

2.06045 

(0.0496967  

50 

2.04030 

(0.0408061  

2.00030 

(0.00989951  

2.02017 

(0.0201350  

2.02017 

(0.000703815  

2.05028 

(0.0199512  

100 

1.99076 

(0.0199076  

1.97076 

(0.00504857  

1.98087 

(0.00988792  

1.98087 

(0.000375042  

1.99575 

(0.00998747  

150 

2.01700 

(0.0134467  

2.00367 

(0.00331619  

2.01031 

(0.00669361  

2.01031 

(0.000239665  

2.02033 

(0.00666117  

500 

1.99742 

(0.00399485  

1.99342 

(0.00100229  

1.99543 

(0.00199476  

1.99543 

(0.000073692  

1.99842 

(0.00199950  

 

Discussion 

In this study, the Bayesian analysis of parameter of Poisson distribution has been discussed. 

Five loss functions including square error loss function (SELF , weighted square error loss function 

(WSELF , LINEX loss function (LLF , quasi quadratic loss function (QQLF  and precautionary loss 

function (PLF  have been proposed to estimate the said parameter under the assumption of different 

(informative and non-informative  priors using complete data. Simulation is done by using the R 

language. 

The simulation study was conducted to analyze the behavior and performance of the estimators 

of the parameter. From the study, it can be assessed that Bayes estimate of the parameter 𝜃 converges 

to the true value of 𝜃 (for which the simulation is done  by increasing the sample size. Under each prior 

(gamma, exponential, uniform and Jaffrey’s  the convergence of the estimates towards the true value of 

parameter is faster in case of LLF and QQLF. The rate of convergence is random under remaining loss 

functions. Using WSELF the estimated value of parameter is always less than the estimates obtained 

under other loss functions. The Bayes estimates obtained under LLF and QQLF are same for each prior. 

The convergence under SELF, WSELF and PLF is good but random for any value of parameter under 
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each prior. The risk associated with estimates under QQLF is the minimum for each estimate while the 

maximum risk is associated with estimates under WSELF (for smaller parameter values  and SELF & 

LLF (for larger values of parameter  for each prior. It has been observed that for larger parameter values 

risk associated with estimates for each prior under LLF is higher than other loss functions. The patterns 

of risks are similar almost for each prior and under every loss function. It can also be observed that the 

risk associated with SELF estimates is approximately double for = 0.5 , seven times for 𝜃 = 1 and fifty 

four times for 𝜃 = 2  than that of QQLF estimates for each prior. The risk associated with WSELF 

estimates is approximately ten times greater than that of QQLF estimates for 𝜃 = 0.5 , for 𝜃 = 1 it is 

approximately seven times and for 𝜃 = 2 it is approximately thirteen times greater. The risk associated 

with LLF estimates is approximately equal for 𝜃 = 0.5 , four times for 𝜃 = 1 and twenty seven times 

greater than that of QQLF estimates for each prior. Similarly, the risk associated with the PLF estimates 

is approximately five times for 𝜃 = 0.5 , seven times for 𝜃 = 01 and twenty seven times greater than 

that of QQLF estimates for each prior. It has been observed that under gamma, uniform and Jaffrey’s 

priors for different sample sizes, the parameter is under and overestimated due to simulation. While in 

case of exponential prior the parameter is overestimated for most of the samples except for the estimates 

of WSELF under each prior for which the parameter is underestimated for almost all the sample sizes 

sue to simulation. 

 Finally, it can be concluded that the QQLF may be preferred for obtaining the Bayes estimates 

of parameter 𝜃 of Poisson distribution, for each prior, as the risks associated with these estimates are 

minimum. However, the convergence of the estimates towards true value of the parameter 𝜃 under PLF 

estimates is comparatively faster for uniform and Jaffrey’s priors, while in case of gamma and 

exponential priors the convergence is faster for estimates under SELF & LLF. The performance of all 

the priors is almost similar for each loss function. So, QQLF estimator under each prior provides most 

efficient results for parameter 𝜃 of Poisson distribution. The risks associated with SELF, LLF and PLF 

estimates are minimum under gamma prior than those of other priors. While the risks associated with 

estimates of WSELF are minimum under exponential and uniform priors (and are same . Similarly, the 

risks associated with QQLF are minimum. 

So, for Bayesian analysis of parameter of Poisson distribution gamma prior is best prior and 

QQLF is best loss function and provides most efficient results. 
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