Chitosan-based nanoparticles of Moringa oleifera with enhanced bioactivities
DOI:
https://doi.org/10.63147/krjs.v4i01.112Keywords:
AlishanAbstract
Moringa oleifera is also known as miracle tree because of it’s nutritional and physiological benefits. In this research, structural and biochemical characterization of Moringa oleifera’s extracts and nanoparticles were done. n-hexane, methanolic and aqueous extract of M. oleifera was prepared by microwave assisted method. The obtained percentage yield of methanolic extract was the highest (8.86%). Chitosan based nanoparticles of methanolic extract was prepared by ionic gelation method that was almost 100nm in size with positive charge on it. Biochemical characterization was assessed by antioxidant (total phenolic content, total flavonoid content and DPPH radical scavenging assay), anti-diabetic (alpha amylase inhibition assay), cytotoxic (percentage hemolysis) and anti-inflammatory (albumin denaturation method) activities. One-way ANOVA was used for the analysis of data. In comparison between extracts and nanoparticles, it was observed that nanoparticles were less toxic (1.99±0.86%) and showed higher antioxidant (65.67±0.26%), anti-diabetic (85.87±6.64%) and anti-inflammatory potential (83.55±0.76%). Different functional groups were identified by fourier transform infrared spectroscopy such as primary and secondary amines, amides, carboxylic acid, alkanes, aldehyde, alkene, alcohol, ether, ester and sulphates. High performance liquid chromatography confirmed the presence of kaempherol, p-coumaric acid, salicylic acid and chlorogenic acid.
References
Abdulkadir AR, Zawawi DD, & Jffahan MS. 2015. DPPH antioxidant activity, total phenolic and total flavonoid content of different part of drumstic tree (Moringa oleifera Lam.). Journal of Chemical and Pharmaceutical Research. 7(4): 1423-1428. https://www.researchgate.net/publication/306179560
Abo El-Fadl S, Osman A, Al-Zohairy AM, Dahab AA, & Abo El Kheir ZA. 2020. Assessment of total phenolic, flavonoid content, antioxidant potential and hplc profile of three moringa species leaf extracts. Scientific Journal of Flowers and Ornamental Plants. 7(1): 53-70. DOI: 10.21608/sjfop.2020.91397. DOI: https://doi.org/10.21608/sjfop.2020.91397
Adebisi F, Adedayo A, Oluwaseye A, Adekunle F, Michael A, Olutayo O, & Ademola A. 2014. Instrumental and chemical characterization of Moringa oleifera Lam root starch as an industrial biomaterial. Research in Pharmaceutical Biotechnology. 5(1): 7-12. DOI: 10.5897/RPB13.0089.
Ahamad TAA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, & Tang SGH. 2023. Phytofabrication of selenium nanoparticles with Moringa oleifera (MO-SeNPs) and exploring its antioxidant and antidiabetic potential. Molecules. 28(14): 1-19. https://doi.org/10.3390/molecules28145322 DOI: https://doi.org/10.3390/molecules28145322
Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Nwankwo U, Bashir AKH, & Ezema FI. 2021. Synthesis and characterization of iron oxide nanoparticles capped with Moringa oleifera: the mechanisms of formation effects on the optical, structural, magnetic and morphological properties. Materials Today: Proceedings. 36(2021): 214-218. https://doi.org/ 10.1016/j.matpr.2020.03.167. DOI: https://doi.org/10.1016/j.matpr.2020.03.167
Akhtar B, Muhammad F, Aslam B, & Saleemi MK. 2020. Toxicity studies of oral and transdermal formulations of gentamicin loaded PLGA nanoparticles in animal model. Pakistan Veterinary Journal. 40(1):67-72. DOI: 10.29261/pakvetj/2019.121 DOI: https://doi.org/10.29261/pakvetj/2019.121
Asigbaase M, Adusu D, Anaba L, Abugre S, Kang MS, Acheamfour SA, & Ackah DK. 2023. Conservation and economic benefits of medicinal plants: Insights from forest-fringe communities of Southwestern Ghana. Trees, Forests and People. 14 (2023) 100462. https://doi.org/10.1016/j.tfp.2023.100462. DOI: https://doi.org/10.1016/j.tfp.2023.100462
Atolani A, Oe O, Priyanka B, Osin O, Preissner R, & Aa N. 2020. Isolation, characterisation and in silico toxicity evaluations of thiocarbamates, isothiocyanates, nitrile, glucosinolate and lipids from Moringa oleifera Lam. seed. Journal of the Turkish Chemical Society Section A: Chemistry. 7(1): 233-242. https://doi.org/10.18596/jotcsa.569960. DOI: https://doi.org/10.18596/jotcsa.569960
Auwal MS, Tijjani AN, Sadiq MA, Saka S, Mairiga IA, Shuaibu A, & Gulani IA. 2013. Antibacterial and haematological activity of Moringa oleifera aqueous seed extract in Wistar albino rats. Sokoto Journal of Veterinary Sciences. 11(1): 28-37. http://dx.doi.org/10.4314/sokjvs.v11i1.5. DOI: https://doi.org/10.4314/sokjvs.v11i1.5
Bello OS, Adegoke KA, & Akinyunni OO. 2017. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Applied Water Science. 7: 1295-1305. DOI 10.1007/s13201-015-0345-4. DOI: https://doi.org/10.1007/s13201-015-0345-4
Bessalah S, Faraz A, Dbara M, Khorcheni T, Hammadi M, Ajose DJ, & Saeed SI. 2024. Antibacterial, Anti-Biofilm, and Anti-Inflammatory Properties of Gelatin–Chitosan–Moringa-Biopolymer-Based Wound Dressings towards Staphylococcus aureus and Escherichia coli. Pharmaceuticals. 17(5): 1-13. https://doi.org/10.3390/ph17050545 DOI: https://doi.org/10.3390/ph17050545
Elhalabi HM, Amr A, & El-Ghwas DE. 2024. Assessment of Anti-inflammatory, Antimicrobial and Cytotoxicity of Chitosan-Moringa Composite and Calcium Hydroxide Nanoparticles as an intra-canal medicament in vitro. Research Journal of Pharmacy and Technology. 17(2): 776-788. DOI: 10.52711/0974-360X.2024.00121 DOI: https://doi.org/10.52711/0974-360X.2024.00121
Hani N, Azarian MH, Torkamani AE, & Kamil MWA. 2016. Characterisation of gelatin nanoparticles encapsulated with Moringa oleifera bioactive extract. International Journal of Food Science & Technology. 51(11): 2327-2337. https://doi.org/10.1111/ijfs.13211 DOI: https://doi.org/10.1111/ijfs.13211
Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I, Khan A, & Saleem A. 2023. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro-and inflammatory cytokines. Inflammopharmacology. 31(1): 287-300. https://link.springer.com/article/10.1007/s10787-022-01118-4 DOI: https://doi.org/10.1007/s10787-022-01118-4
Hussain F, Akram A, Hafeez J, & Shahid M. 2021. Biofunctional characterization of red, black and white ginseng (Panax ginseng Meyer) root extracts. Revista Mexicana de Ingeniería Química. 20(1): 173-184. https://doi.org/10.24275/rmiq/Bio1735. DOI: https://doi.org/10.24275/rmiq/Bio1735
Hussain M, Raja NI, Iqbal M, Ejaz M, Aslam S, Rehman AU, & Javaid U. 2018. Seed germination and biochemical profile of Citrus reticulata (Kinnow) exposed to green synthesised silver nanoparticles. IET nanobiotechnology. 12(5): 688-693. https://doi.org/10.1049/iet-nbt.2017.0303 DOI: https://doi.org/10.1049/iet-nbt.2017.0303
Ing LY, Zin NM, Sarwar A, & Katas H. 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International journal of Biomaterials. 2012(1): 1-9. https://doi.org/10.1155/2012/632698 DOI: https://doi.org/10.1155/2012/632698
Jahan IA, Hossain MH, Ahmed KS, Sultana Z, Biswas PK, & Nada K. 2018. Antioxidant activity of Moringa oleifera seed extracts. Oriental Pharmacy and Experimental Medicine. 18: 299-307. https://doi.org/10.1007/s13596-018-0333-y. DOI: https://doi.org/10.1007/s13596-018-0333-y
Jahan N, Aslam S, Rahman KU, Fazal T, Anwar F, & Sahe, R. 2016. Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. Journal of experimental Nanoscience. 11(1): 72-80. https://doi.org/10.1080/17458080.2015.1025303 DOI: https://doi.org/10.1080/17458080.2015.1025303
Jiang X, Yang J, Zhou Z, Yu L, Yu L, He J, & Fang C. 2023. Moringa oleifera leaf improves meat quality by modulating intestinal microbes in white feather broilers. Food Chemistry: X. 20 (2023) 100938. https://doi.org/10.1016/j.fochx.2023.100938. DOI: https://doi.org/10.1016/j.fochx.2023.100938
Kalaiselvi V, Mathammal R, Vijayakumar S, & Vaseeharan B. 2018. Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. International Journal of Veterinary Science and Medicine. 6(2): 286-295. https://doi.org/10.1016/j.ijvsm.2018.08.003 DOI: https://doi.org/10.1016/j.ijvsm.2018.08.003
Kaur P, Sharma K, & Goyal RK. 2023. Moringa oleifera extract ameliorates diabetic retinopathy via NF-κB and VCAM-1 pathway in streptozotocin induced diabetic rats. South African Journal of Botany. 162: 519-530. https://doi.org/10.1016/j.sajb.2023.09.040. DOI: https://doi.org/10.1016/j.sajb.2023.09.040
Khalid S, Arshad M, Mahmood S, Siddique F, Roobab U, Ranjha MMAN, & Lorenzo JM. 2023. Extraction and quantification of Moringa oleifera leaf powder extracts by HPLC and FTIR. Food Analytical Methods. 16(4): 787-797. https://doi.org/10.1007/s12161-023-02470-z DOI: https://doi.org/10.1007/s12161-023-02470-z
Kiran MS, Kumar CR, Shwetha UR, Onkarappa HS, Betageri VS, & Latha MS. 2021. Green synthesis and characterization of gold nanoparticles from Moringa oleifera leaves and assessment of antioxidant, antidiabetic and anticancer properties. Chemical Data Collections. 33 (2021) 100714. doi:10.1016/j.cdc.2021.100714 DOI: https://doi.org/10.1016/j.cdc.2021.100714
Kulkarni A, Nimbarte S, & Charde V. 2014. Phytochemical prospection of fennel oil using GC-MS, FT-IR and NMR spectroscopy. RECENT DEVELOPMENT. 70: 789-987. https://www.semanticscholar.org/paper/GC-MS%2C-FT-IR-and-NMR-Spectroscopy-Analysis-for-of-Kulkarni-Jan/e95a478602c85fd4dc02cf90b6b451897f18fd05
Kumbhare M, & Sivakumar T. 2011. Anti-inflammatory and analgesic activity of stem bark of Moringa oleifera. Pharmacologyonline. 3: 641-650. https://pharmacologyonline.silae.it/files/archives/2011/vol3/067.manoj.pdf
Magaji UF, Sacan O, & Yanardag RJSAJOB. 2020. Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. South African Journal of Botany. 128(2020): 225-230. https://doi.org/10.1016/j.sajb.2019.11.024. DOI: https://doi.org/10.1016/j.sajb.2019.11.024
Muhammad S, Ali A, Shah J, Hamza M, Kashif M, Khel BKA, & Iqbal A. 2023. Using Moringa oleifera stem extract for green synthesis, characterization, and anti-inflammatory activity of silver oxide nanoparticles. Natural and Applied Sciences International Journal 4(1): 80-97. https://doi.org/10.47264/idea.nasij/4.1.6 DOI: https://doi.org/10.47264/idea.nasij/4.1.6
Namakka M, Rahman MR, Said KAMB, Mannan MA, & Patwary AM. 2023. A review of nanoparticle synthesis methods, classifications, applications, and characterization. Environmental Nanotechnology, Monitoring & Management. 20: 1-30. https://doi.org/10.1016/j.enmm.2023.100900 DOI: https://doi.org/10.1016/j.enmm.2023.100900
Noreen A, Hussain F, & Shahid M. 2020. Insights on the antioxidant, antidiabetic, antiamnesic, cytotoxic, thrombolytic and antibiofilm activities of Stevia rebaudiana leaves. Prog Nutr. 22 (3) e2020027. DOI: 10.23751/pn.v22i3.6169.
Nwokorie IC, Anyakora VN, & Abdulkarim BI. 2023. Characterisation of Moringa oleifera for purification of treated water sludge. Open Journal of Engineering Science. 4(2): 1-13. DOI: https://doi.org/10.52417/ojes.v4i2.498. DOI: https://doi.org/10.52417/ojes.v4i2.498
Okumu MO, Mbaria JM, Kanja LW, Gakuya DW, Kiama SG, & Ochola FO. 2016. Phytochemical profile and antioxidant capacity of leaves of Moringa oleifera (Lam) extracted using different solvent systems. Journal of Pharmacognosy and Phytochemistry. 5(4): 302-308. https://www.phytojournal.com/archives?year=2016&vol=5&issue=4&ArticleId=928
Pathak I, Budhathoki R, Yadav N, Niraula M, & Kalauni SK. 2020. Phytochemical screening, cytotoxic and antioxidant activity of Alternathera sessilis and Moringa oleifera. Amrit Research Journal. 1(1): 65-71. https://www.researchgate.net/publication/345152004 DOI: https://doi.org/10.3126/arj.v1i1.32456
Pavia DL, Lampman GM, Kriz GS, & Vyvyan JR. 2015. Introduction to spectroscopy.1:1-104.http://ebookowl-us.ezyro.com/11-allie-hartmann-iii-1/introduction-to-spectroscopy-5th-ed-ebook.pdf?i=1
Ramesh, CJ. 2018. Antimicrobial, phytochemical and quantitative HPLC analysis of Moringa oleifera root. Innoriginal: International Journal of Sciences. 5(6): 25-28. https://innoriginal.com/index.php/iijs/article/view/211
Saleem A, Saleem M, & Akhtar MF. 2020. Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. South African Journal of Botany. 128: 246-256. https://doi.org/10.1016/j.sajb.2019.11.023. DOI: https://doi.org/10.1016/j.sajb.2019.11.023
Salem MZ, Ali HM, & Akrami M. 2021. Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Scientific Reports. 11 (1) 19027. https://doi.org/10.1038/s41598-021-98415-9. DOI: https://doi.org/10.1038/s41598-021-98415-9
Salmeron ME, Garrido CJA, & Manzano AF. 2020. Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health. 17 (10) 3376. https://doi.org/10.3390/ijerph17103376. DOI: https://doi.org/10.3390/ijerph17103376
Segwatibe MK, Cosa S, & Bassey K. 2023. Antioxidant and antimicrobial evaluations of Moringa oleifera Lam leaves extract and isolated compounds. Molecules. 28 (2) 899. https://doi.org/10.3390/molecules28020899. DOI: https://doi.org/10.3390/molecules28020899
Shahzadi T, Zaib M, Riaz T, Shehzadi S, Abbasi MA, & Shahid M. 2019. Synthesis of eco-friendly cobalt nanoparticles using Celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial, hemolytic and catalytical agent. Arabian Journal for Science and Engineering. 44: 6435-6444. https://doi.org/10.1007/s13369-019-03937-0. DOI: https://doi.org/10.1007/s13369-019-03937-0
Sharif S, Shahid M, Atta A, Abbas M, & Mustafa G. 2017. Comparative evaluation of antioxidant and DNA protective potentials of fifteen selected medicinal plants native to Pakistan. Oxidation Communications. 40(2): 657–674. https://www.researchgate.net/publication/318461327
Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, & Sridharan M. 2016. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities. Journal of Photochemistry and Photobiology B: Biology. 161(2016): 463-471. https://doi.org/10.1016/j.jphotobiol.2016.06.013. DOI: https://doi.org/10.1016/j.jphotobiol.2016.06.013
Thampithak A, Karachot B, Jantaratnotai N, Tuchinda P, & Sanvarinda P. 2024. Anti-inflammatory effects of Moringa oleifera lam leaf extract in lipopolysaccharide-activated microglia. Trends in Sciences. 21(5): 7407-7407. https://doi.org/10.48048/tis.2024.7407. DOI: https://doi.org/10.48048/tis.2024.7407
Usman MRM, & Barhate S. 2012. Phytochemical investigation and study of antiinflammatory activity of Moringa oleifera Lam. International Journal of Pharmaceutical Research & Development. 3(11): 114-119. https://www.researchgate.net/publication/274893228
Williams LAD, O'connar A, Latore L, Dennis O, Ringer S, Whittaker JA, & Kraus W. 2008. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Medical Journal. 57(4): 1-5. http://dx.doi.org/10.1215/9780822388630-010 DOI: https://doi.org/10.1215/9780822388630-010
Younas M, Rasool MH, Khurshid M, Khan A, Nawaz MZ, Ahmad I, & Lakhan MN. 2023. Moringa oleifera leaf extract mediated green synthesis of silver nanoparticles and their antibacterial effect against selected gram-negative strains. Biochemical Systematics and Ecology. 107: 104605. https://doi.org/10.1016/j.bse.2023.104605. DOI: https://doi.org/10.1016/j.bse.2023.104605
Downloads
Published
Issue
Section
License
Copyright (c) 2025 FATMA HUSSAIN, ABEER KHIZRAN, MUNIBA KARAMAT, JAVARIA HAFEEZ

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under CC BY-NC 4.0