Effects of Ionizing and Non-Ionizing Radiation on Animal Physiology and Behaviour: An Interdisciplinary Review
DOI:
https://doi.org/10.63147/krjs.v4i4.225Keywords:
radiation exposure, oxidative stress, animal physiology, behaviour, vertebrates, invertebratesAbstract
The radiation affects animals differently based on their kind, intensity and animal biology. Direct impairment of DNA and weakening of the immune system and an augmentation of oxidative stress may be produced by ionizing radiation like X-rays and gamma rays. Non-ionizing radiation (ultraviolet light, electromagnetic fields) does not fragment the bonds between atoms, but can alter hormonal balance, reproduction, behaviour and circadian rhythms. Studies conducted in the highly polluted areas such as Chernobyl and Fukushima, and also in controlled laboratory research indicate that the animals are not responsive to radiation. This is more sensitive to amphibians and some bird species and the inefficiency of the DNA repair system and the resilience of antioxidant systems helps some insects and invertebrates to cope with it. Such effects on the environment usually go outside individuals and interfere with population structure, migration, reproduction and food-web stability. The review unites both vertebrates and invertebrates’ evidence to compare the effects of radiation on their physiology and ecology. It marks significant processes like oxidative stress, DNA damage, hormonal destabilization and behavioural alteration. These responses have important implications on understanding the protection of wildlife and also on the establishment of realistic radiological safety standards and future research priorities.
References
Aburawi, S. M., Abusaida, H., El Jaafari, H., Altaboni, O., & others. (2020). Effect of mobile phone radiation on reproductive system and behavior using female albino mice. Zenodo.10.5281/zenodo.4284
Bancroft, B. A., Baker, N. J., & Blaustein, A. R. (2007). Effects of UV-B radiation on marine and freshwater organisms: A synthesis through meta-analysis. Ecology Letters, 10(4), 332–345. https://doi.org/10.1111/j.1461-0248.2007.01022.x
Blaustein, A. R., Romansic, J. M., & Hatch, A. C. (2003). Ultraviolet radiation, toxic chemicals and amphibian population declines. Diversity & Distributions, 9(2), 123–140. https://doi.org/10.1046/j.1472-4642.2003.00015.x
Borgeraas, J., & Hessen, D. O. (2000). UV-B induced mortality and antioxidant enzyme activities in Daphnia magna. Journal of Plankton Research, 22(6), 1167–1183. https://doi.org/10.1093/plankt/22.6.1167
Burraco, P., Bonzom, J.-M., Car, C., et al. (2021). Lack of impact of radiation on blood physiology biomarkers of Chernobyl tree frogs (Hyla orientalis). Frontiers in Zoology, 18, 33. https://doi.org/10.1186/s12983-021-00416-x
Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, J. F. B., & de Snoo, G. R. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 51, 116–140.https://doi.org/10.1016/j.envint.2012.10.009
De Iuliis, G. N., Newey, R. J., King, B. V., & Aitken, R. J. (2009). Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.PLOS ONE, 4(7), e6446. https://doi.org/10.1371/journal.pone.0006446
Dyche, J., Anch, A. M., Fogler, K. A. J., Barnett, D. W., & Thomas, C. (2006). Effects of power frequency electromagnetic fields on melatonin and sleep in the rat. Bioelectromagnetics, 27(7), 585–593. https://doi.org/10.3402/ehtj.v5i0.10904
Galván, I., Bonisoli-Alquati, A., Jenkinson, S., Ghanem, G., Wakamatsu, K., Mousseau, T. A., & Møller, A. P. (2014). Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Functional Ecology, 28(5), 1387–1403. https://doi.org/10.1111/1365-2435.12283
Garnier-Laplace, J., Geras’kin, S., Della-Vedova, C., Beaugelin-Seiller, K., Hinton, T. G., Real, A., & Oudalova, A. (2013). Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. Journal of Environmental Radioactivity, 121, 12–21. https://doi.org/10.1016/j.jenvrad.2012.01.013
Gomes, T., Song, Y., Brede, D. A., Xie, L., Gutzkow, K. B., Salbu, B., & Tollefsen, K. E. (2018). Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna.Science of the Total Environment, 628–629, 206–216. https://doi.org/10.1016/j.scitotenv.2018.02.039
Hall, E. J., & Giaccia, A. J. (2023). Radiobiology for the radiologist (9th ed.). Philadelphia, PA: Wolters Kluwer.
Hinton, T. G., Alexakhin, R. M., Balonov, M. I., Gentner, N., Hendry, J. H., Prister, B. S., Fesenko, S., & Woodhead, D. S. (2007). Radiation-induced effects on plants and animals: Findings of the United Nations Chernobyl Forum. Health Physics, 93(5), 427–440. https://doi.org/10.1097/01.HP.0000281179.03443.2e
Hiyama, A., Nohara, C., Kinjo, S., Taira, W., Gima, S., Tanahara, A., & Otaki, J. M. (2012). The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Scientific Reports, 2, 570. https://doi.org/10.1038/srep00570
Ikeda, S., Otsubo, T., Shimizu, N., Yamada, M., & Hayashi, Y. (2019). Radiation tolerance in insects: A review of mechanisms, model species, and ecological implications. Journal of Environmental Radioactivity, 203, 24–32. https://doi.org/10.1016/j.jenvrad.2019.03.004
International Atomic Energy Agency. (2020). The Chernobyl accident: Environmental impact and long-term health effects. Vienna, Austria: IAEA. ISBN 978-92-0-102420-2
Kolesnikova, I. A., Lalkovičova, M., Severyukhin, Y. S., Golikova, K. N., Utina, D. M., Pronskikh, E. V., … Budennaya, N. N. (2023). The effects of whole-body gamma irradiation on mice: Age-related behavioural and pathophysiological changes. Cellular and Molecular Neurobiology, 43(7), 3723–3741. https://doi.org/10.1007/s10571-023-01381-1
Levitt, B. B., & Chirnside, A. E. (2022). Low-level EMF effects on wildlife and plants. Frontiers in Public Health, 10, Article 1000840. https://doi.org/10.3389/fpubh.2022.1000840
Møller, A. P., & Mousseau, T. A. (2015). Strong effects of ionizing radiation from Chernobyl on mutation rates. Scientific Reports, 5, 8363. https://doi.org/10.1038/srep08363
Zawilska, J. B., & Rosiak, J. (2000). Near-ultraviolet radiation suppresses melatonin synthesis in chicken retina. Neuroscience Letters, 275(1–2), 69–72. 10.1016/s0024-3205(00)00805-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Usman Ali Hashmi, Nasir Ilyas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under CC BY-NC 4.0


