Chemicals That Disrupt the Endocrine System and Their Effects on Behavior
Keywords:
Endocrine disrupting chemicalsAbstract
Endocrine glands are the important glands of humans that perform certain functions and has specific characteristics. The main function of these glands is that they regulate the whole system by producing hormones which they produce indigenously and pour them directly in the blood for a targeted action and all of their functions are involuntary. They are specifically ductless glands and their course of action is regulated by a pea size Pituitary gland or sometimes referred as the Master Gland. Until now, very little has been known about these glands that their actions or functions are being interrupted or disturbed by chemicals or other environmental actions. There are certain chemicals which include chlorpyrifos, DDT, insecticides, pesticides, fungicides and other daily use items such as plastics, paints, furniture, perfumes, toys polishes, electronic gadgets, items of food packaging are reported to have disturbed the normal hormonal functions in humans that are leading to numerous diseases due to either lack of production of specific hormone or increased production of a specific hormone by the action of these chemicals. The diseases that are commonly reported due to the action of the above chemicals and daily use items includes neurological disorders, behavioral disorders, metabolic dysfunction leading to obesity or weakness, thyroid dysfunction, reproductive disturbances and several others that can prove fatal and lead to cancer as well. All these chemicals and items are named as Endocrine Disruptors by the researchers. Still a lot is to be done and there is a huge potential of research in this area which if focused properly can prove as an agent of change in the field of Medical and Health Sciences and Human race can be saved from diverse diseases which may be linked to these disruptors and can be treated timely. In the light of the above, there is dire need of research in this area so as to be familiar to the hazardous and health related issues in Humans caused by these disruptors and to find an alternative for the chemicals and items in order to save the humanity from the negative impacts of these disruptors.
References
Adewale, H. B., Jefferson, W. N., Newbold, R. R., & Patisaul, H. B. (2009). Neonatal bisphenol-a exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biology of Reproduction, 81(4), 690-699.
Adewale, H. B., Todd, K. L., Mickens, J. A., & Patisaul, H. B. (2011). The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat. Neurotoxicology, 32(1), 38-49.
Adinolfi, M. (1985). The development of the human blood‐CSF‐brain barrier. Developmental Medicine & Child Neurology, 27(4), 532-537.
Arambula, S. E., Belcher, S. M., Planchart, A., Turner, S. D., & Patisaul, H. B. (2016). Impact of low dose oral exposure to bisphenol A (BPA) on the neonatal rat hypothalamic and hippocampal transcriptome: a CLARITY-BPA consortium study. Endocrinology, 157(10), 3856-3872.
Baldwin, K. R., Phillips, A. L., Horman, B., Arambula, S. E., Rebuli, M. E., Stapleton, H. M., & Patisaul, H. B. (2017). Sex specific placental accumulation and behavioral effects of developmental Firemaster 550 exposure in Wistar rats. Scientific Reports, 7(1), 1-13.
Belcher, S. M., & Zsarnovszky, A. (2001). Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. Journal of Pharmacology and Experimental Therapeutics, 299(2), 408-414.
Bellinger, D. C., Daniel, D., Trachtenberg, F., Tavares, M., & McKinlay, S. (2007). Dental amalgam restorations and children’s neuropsychological function: the New England Children’s Amalgam Trial. Environmental Health Perspectives, 115(3), 440-446.
Blair, R. M., Fang, H., Branham, W. S., Hass, B. S., Dial, S. L., Moland, C. L., Tong W., Shi L., Roger Perkins & Sheehan, D. M. (2000). The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicological Sciences, 54(1), 138-153.
Boudalia, S., Berges, R., Chabanet, C., Folia, M., Decocq, L., Pasquis, B., Abdennebi-Najar, L. & Canivenc-Lavier, M. C. (2014). A multi-generational study on low-dose BPA exposure in Wistar rats: effects on maternal behavior, flavor intake and development. Neurotoxicology and Teratology, 41, 16-26.
Braun, J. M., Yolton, K., Dietrich, K. N., Hornung, R., Ye, X., Calafat, A. M., & Lanphear, B. P. (2009). Prenatal bisphenol A exposure and early childhood behavior. Environmental Health Perspectives, 117(12), 1945-1952.
Bushnik, T., Haines, D., Levallois, P., Levesque, J., Van Oostdam, J., & Viau, C. (2010). Lead and bisphenol A concentrations in the Canadian population. Health Reports, 21(3), 7.
Calafat, A. M., Kuklenyik, Z., Reidy, J. A., Caudill, S. P., Ekong, J., & Needham, L. L. (2005). Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental Health Perspectives, 113(4), 391-395.
Cao, J., Rebuli, M. E., Rogers, J., Todd, K. L., Leyrer, S. M., Ferguson, S. A., & Patisaul, H. B. (2013). Prenatal bisphenol A exposure alters sex-specific estrogen receptor expression in the neonatal rat hypothalamus and amygdala. Toxicological Sciences, 133(1), 157-173.
Carr, R. L., Bertasi, F. R., Betancourt, A. M., Bowers, S. D., Gandy, B. S., Ryan, P. L., & Willard, S. T. (2003). Effect of neonatal rat bisphenol a exposure on performance in the Morris water maze. Journal of Toxicology and Environmental Health, Part A: Current Issues, 66(21), 2077-2088.
Casas, M., Chevrier, C., Den Hond, E., Fernandez, M. F., Pierik, F., Philippat, C., Slama, R., Toft, G., Vandentorren, S., Wilhelm, M. & Vrijheid, M. (2013). Exposure to brominated flame retardants, perfluorinated compounds, phthalates and phenols in European birth cohorts: ENRIECO evaluation, first human biomonitoring results, and recommendations. International Journal of Hygiene and Environmental Health, 216(3), 230-242.
Cervantes, M. C., David, J. T., Loyd, D. R., Salinas, J. A., & Delville, Y. (2005). Lead exposure alters the development of agonistic behavior in golden hamsters. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 47(2), 158-165.
Cooke, B., Hegstrom, C. D., Villeneuve, L. S., & Breedlove, S. M. (1998). Sexual differentiation of the vertebrate brain: principles and mechanisms. Frontiers in Neuroendocrinology, 19(4), 323-362.
Cox, K. H., Gatewood, J. D., Howeth, C., & Rissman, E. F. (2010). Gestational exposure to bisphenol A and cross-fostering affect behaviors in juvenile mice. Hormones and Behavior, 58(5), 754-761.
De Vries, G. J. (2004). Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology, 145(3), 1063-1068.
Eilam-Stock, T., Serrano, P., Frankfurt, M., & Luine, V. (2012). Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behavioral Neuroscience, 126(1), 175.
Engel, S. M., Levy, B., Liu, Z., Kaplan, D., & Wolff, M. S. (2006). Xenobiotic phenols in early pregnancy amniotic fluid. Reproductive Toxicology, 21(1), 110-112.
Farabollini, F., Porrini, S., Della Seta, D., Bianchi, F., & Dessì-Fulgheri, F. (2002). Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environmental Health Perspectives, 110(suppl 3), 409-414.
Frye, C., Bo, E., Calamandrei, G., Calza, L., Dessì‐Fulgheri, F., Fernández, M., Fusani, L., Kah, O., Kajta, M., Le Page, Y. & Panzica, G. C. (2012). Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. Journal of Neuroendocrinology, 24(1), 144-159.
Gillette, R., Miller-Crews, I., Nilsson, E. E., Skinner, M. K., Gore, A. C., & Crews, D. (2014). Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology, 155(10), 3853-3866.
Gioiosa, L., Parmigiani, S., Vom Saal, F. S., & Palanza, P. (2013). The effects of bisphenol A on emotional behavior depend upon the timing of exposure, age and gender in mice. Hormones and Behavior, 63(4), 598-605.
Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., J, Toppari, & Zoeller, R. T. (2015). EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 36(6), E1-E150.
Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. The Lancet, 368(9553), 2167-2178.
Hicks, K. D., Sullivan, A. W., Cao, J., Sluzas, E., Rebuli, M., & Patisaul, H. B. (2016). Interaction of bisphenol A (BPA) and soy phytoestrogens on sexually dimorphic sociosexual behaviors in male and female rats. Hormones and Behavior, 84, 121-126.
Hotchkiss, A. K., Rider, C. V., Blystone, C. R., Wilson, V. S., Hartig, P. C., Ankley, G. T., Paul M. Foster, Clark L. Gray & Gray, L. E. (2008). Fifteen years after “Wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicological Sciences, 105(2), 235-259.
Hussain, R., Khan, S., Khan, Y., Iqbal, T., Anwar, S., Aziz, T. and Alharbi, M., (2024). Development of promising acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, in vitro and in silico approaches of pyridine derived fused bis-oxadiazole and bis-thiadiazole derivatives. Journal of Molecular Structure, 1310, p.138228.
Ikezuki, Y., Tsutsumi, O., Takai, Y., Kamei, Y., & Taketani, Y. (2002). Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reproduction, 17(11), 2839-2841.
Inadera, H. (2015). Neurological effects of bisphenol A and its analogues. International Journal of Medical Sciences, 12(12), 926.
Jones, B. A., & Watson, N. V. (2012). Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Hormones and Behavior, 61(4), 605-610.
Kakeyama, M., & Tohyama, C. (2003). Developmental neurotoxicity of dioxin and its related compounds. Industrial Health, 41(3), 215-230.
Khan, S., Hussain, R., Khan, Y., Iqbal, T., Aziz, T. and Alharbi, M., (2024). Correlation between in vitro anti-urease activity and in silico molecular modeling approach of novel imidazopyridine–oxadiazole hybrids derivatives. Open Chemistry, 22(1), p.20230210.
Khan, S., Hussain, R., Khan, Y., Iqbal, T., Darwish, H.W. and Ali, M.G., (2024). Novel bis-thiazole-thiazolidinone hybrid derivatives: Synthesis, structural properties and anticholinesterase bioactive potential as drug competitor based on docking studies. Journal of Molecular Structure, 1303, p.137417.
Khan, Y., Khan, S., Hussain, R., Maalik, A., Rehman, W., Attwa, M.W., Masood, R., Darwish, H.W. and Ghabbour, H.A., (2023). The synthesis, in vitro bio-evaluation, and in silico molecular docking studies of pyrazoline–thiazole hybrid analogues as promising anti-α-glucosidase and anti-urease agents. Pharmaceuticals, 16(12), p.1650.
Khan, Y., Khan, S., Hussain, R., Rehman, W., Maalik, A., Gulshan, U., Attwa, M.W., Darwish, H.W., Ghabbour, H.A. and Ali, N., (2023). Identification of Indazole-Based Thiadiazole-Bearing Thiazolidinone Hybrid Derivatives: Theoretical and Computational Approaches to Develop Promising Anti-Alzheimer’s Candidates. Pharmaceuticals, 16(12), p.1667.
Khan, Y., Khan, S., Rehman, W., Hussain, R., Maalik, A., Ali, F., Khan, M.U., Sattar, A. and Assiri, M.A., (2023). Hybrid molecules of thiadiazole-based benzothioate and benzenesulfonothioate: synthesis, structural analysis, and evaluation as potential inhibitors of thymidine phosphorylase and β-glucuronidase through in vitro and in silico approaches. Journal of Molecular Structure, 1294, p.136439.
Khan, Y., Maalik, A., Rehman, W., Hussain, R., Khan, S., Alanazi, M.M., Asiri, H.H. and Iqbal, S., (2023). Identification of novel oxadiazole-based benzothiazole derivatives as potent inhibitors of α-glucosidase and urease: synthesis, in vitro bio-evaluation and their in silico molecular docking study. Journal of Saudi Chemical Society, 27(4), p.101682.
Khan, Y., Rehman, W., Hussain, R., Khan, S., Malik, A., Khan, M., Liaqat, A., Rasheed, L., Begum, F., Fazil, S. and Khan, I., (2022). New biologically potent benzimidazole‐based‐triazole derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors along with molecular docking study. Journal of Heterocyclic Chemistry, 59(12), pp.2225-2239.
Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412-1425.
Kubo, K., Arai, O., Omura, M., Watanabe, R., Ogata, R., & Aou, S. (2003). Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neuroscience Research, 45(3), 345-356.
Kuiper, G. G., Lemmen, J. G., Carlsson, B. O., Corton, J. C., Safe, S. H., Van Der Saag, P. T., Van Der Burg, B. & Gustafsson, J. A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252-4263.
Kumar, D., & Thakur, M. K. (2014). Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain. PLoS One, 9(10), e110482.
Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R. L., Perera, F. P., & Champagne, F. A. (2013). Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proceedings of the National Academy of Sciences, 110(24), 9956-9961.
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., & Champagne, F. A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences, 112(22), 6807-6813.
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., & Champagne, F. A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences, 112(22), 6807-6813.
LaKind, J. S., & Naiman, D. Q. (2015). Temporal trends in bisphenol A exposure in the United States from 2003–2012 and factors associated with BPA exposure: Spot samples and urine dilution complicate data interpretation. Environmental Research, 142, 84-95.
Li, W., Han, S., Gregg, T. R., Kemp, F. W., Davidow, A. L., Louria, D. B., Siegel, A. & Bogden, J. D. (2003). Lead exposure potentiates predatory attack behavior in the cat. Environmental Research, 92(3), 197-206.
Liu, Z. H., Ding, J. J., Yang, Q. Q., Song, H. Z., Chen, X. T., Xu, Y., Xiao, G.R. & Wang, H. L. (2016). Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Scientific Reports, 6(1), 1-11.
Matsuda, S., Matsuzawa, D., Ishii, D., Tomizawa, H., Sutoh, C., Nakazawa, K., Amano, K., Sajiki, J. & Shimizu, E. (2012). Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39(2), 273-279.
McCarthy, M. M. (2016). Multifaceted origins of sex differences in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1688), 20150106.
McCarthy, M. M., & Nugent, B. M. (2013). Epigenetic contributions to hormonally mediated sexual differentiation of the brain. Journal of Neuroendocrinology, 25(11), 1133-1140.
McLachlan, J. A. (2016). Environmental signaling from environmental estrogens to endocrine‐disrupting chemicals and beyond. Andrology, 4(4), 684-694.
Miao, W., Zhu, B., Xiao, X., Li, Y., Dirbaba, N. B., Zhou, B., & Wu, H. (2015). Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquatic Toxicology, 161, 117-126.
Monje, L., Varayoud, J., Muñoz-de-Toro, M., Luque, E. H., & Ramos, J. G. (2009). Neonatal exposure to bisphenol A alters estrogen-dependent mechanisms governing sexual behavior in the adult female rat. Reproductive Toxicology, 28(4), 435-442.
Nahar, M. S., Liao, C., Kannan, K., & Dolinoy, D. C. (2013). Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans. Journal of Biochemical and Molecular Toxicology, 27(2), 116-123.
Nakagami, A., Negishi, T., Kawasaki, K., Imai, N., Nishida, Y., Ihara, T., ... & Koyama, T. (2009). Alterations in male infant behaviors towards its mother by prenatal exposure to bisphenol A in cynomolgus monkeys (Macaca fascicularis) during early suckling period. Psychoneuroendocrinology, 34(8), 1189-1197.
Palanza, P. L., Howdeshell, K. L., Parmigiani, S., & vom Saal, F. S. (2002). Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice. Environmental Health Perspectives, 110(suppl 3), 415-422.
Patisaul, H. B., Sullivan, A. W., Radford, M. E., Walker, D. M., Adewale, H. B., Winnik, B., Coughlin, J.L., Buckley, B. & Gore, A. C. (2012). Anxiogenic effects of developmental bisphenol A exposure is associated with gene expression changes in the juvenile rat amygdala and mitigated by soy.
Perera, F., & Herbstman, J. (2011). Prenatal environmental exposures, epigenetics, and disease. Reproductive Toxicology, 31(3), 363-373.
Perera, F., Vishnevetsky, J., Herbstman, J. B., Calafat, A. M., Xiong, W., Rauh, V., & Wang, S. (2012). Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environmental Health Perspectives, 120(8), 1190-1194.
Picot, M., Naulé, L., Marie-Luce, C., Martini, M., Raskin, K., Grange-Messent, V., Franceschini, I., Keller, M. & Mhaouty-Kodja, S. (2014). Vulnerability of the neural circuitry underlying sexual behavior to chronic adult exposure to oral bisphenol a in male mice. Endocrinology, 155(2), 502-512.
Porrini, S., Belloni, V., Della Seta, D., Farabollini, F., Giannelli, G., & Dessì-Fulgheri, F. (2005). Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. Brain Research Bulletin, 65(3), 261-266.
Rebuli, M. E., Camacho, L., Adonay, M. E., Reif, D. M., Aylor, D. L., & Patisaul, H. B. (2015). Impact of low-dose oral exposure to bisphenol A (BPA) on juvenile and adult rat exploratory and anxiety behavior: A CLARITY-BPA consortium study. Toxicological Sciences, 148(2), 341-354.
Ribas-Fito, N., Sala, M., Kogevinas, M., & Sunyer, J. (2001). Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review. Journal of Epidemiology & Community Health, 55(8), 537-546.
Rochester JR (2013) Bisphenol A and human health: A review of the literature. Reproductive Toxicology 42: 132–155.
Roen, E. L., Wang, Y., Calafat, A. M., Wang, S., Margolis, A., Herbstman, J., Hoepner, L.A., Rauh, V. & Perera, F. P. (2015). Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environmental Research, 142, 739-745.
Ryan, B. C., Hotchkiss, A. K., Crofton, K. M., & Gray Jr, L. E. (2010). In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats. Toxicological Sciences, 114(1), 133-148.
Schönfelder, G., Wittfoht, W., Hopp, H., Talsness, C. E., Paul, M., & Chahoud, I. (2002). Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environmental Health Perspectives, 110(11), A703-A707.
Schwarz, J. M., & McCarthy, M. M. (2008). Steroid‐induced sexual differentiation of the developing brain: multiple pathways, one goal. Journal of Neurochemistry, 105(5), 1561-1572.
Steinberg, R. M., Juenger, T. E., & Gore, A. C. (2007). The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Hormones and Behavior, 51(3), 364-372.
Sullivan, A. W., Beach, E. C., Stetzik, L. A., Perry, A., D'Addezio, A. S., Cushing, B. S., & Patisaul, H. B. (2014). A novel model for neuroendocrine toxicology: neurobehavioral effects of BPA exposure in a prosocial species, the prairie vole (Microtus ochrogaster). Endocrinology, 155(10), 3867-3881.
Suzuki, M., Lee, H. C., Chiba, S., Yonezawa, T., & Nishihara, M. (2004). Effects of methoxychlor exposure during perinatal period on reproductive function after maturation in rats. Journal of Reproduction and Development, 50(4), 455-461.
Thayer, K. A., Doerge, D. R., Hunt, D., Schurman, S. H., Twaddle, N. C., Churchwell, M. I., Garantziotis, S., Kissling, G.E., Easterling, M.R., Bucher, J.R. & Birnbaum, L. S. (2015). Pharmacokinetics of bisphenol A in humans following a single oral administration. Environment International, 83, 107-115.
Tian, Y. H., Baek, J. H., Lee, S. Y., & Jang, C. G. (2010). Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse, 64(6), 432-439.
Ullah, Z., Rehman, W., Rashid, M.U., Khan, S., Hussain, R., Khan, Y., Iqbal, T., Felemban, S. and Khowdiary, M.M., (2024). Integrated insights into the Synthesis and biological significances of novel benzofuran based oxadiazole/thiadiazole derivatives: A comprehensive computational and experimental study. Journal of Molecular Structure, p.138726.
Viberg, H., Fredriksson, A., Jakobsson, E., Örn, U., & Eriksson, P. (2003). Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicological Sciences, 76(1), 112-120.
Von Goetz, N., Wormuth, M., Scheringer, M., & Hungerbühler, K. (2010). Bisphenol A: how the most relevant exposure sources contribute to total consumer exposure. Risk Analysis: An International Journal, 30(3), 473-487.
Waller, C. L., Oprea, T. I., Chae, K., Park, H. K., Korach, K. S., Laws, S. C., Wiese, T.E., Kelce, W.R. & Gray, L. E. (1996). Ligand-based identification of environmental estrogens. Chemical Research in Toxicology, 9(8), 1240-1248.
Wolstenholme, J. T., Taylor, J. A., Shetty, S. R., Edwards, M., Connelly, J. J., & Rissman, E. F. (2011). Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PloS one, 6(9), e25448.
Xu, X. H., Wang, Y. M., Zhang, J., Luo, Q. Q., Ye, Y. P., & Ruan, Q. (2010). Perinatal exposure to bisphenol‐A changes N‐methyl‐D‐aspartate receptor expression in the hippocampus of male rat offspring. Environmental Toxicology and Chemistry, 29(1), 176-181.
Xu, X. H., Zhang, J., Wang, Y. M., Ye, Y. P., & Luo, Q. Q. (2010). Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Hormones and Behavior, 58(2), 326-333.
Xu, X., Liu, Y., Sadamatsu, M. E., Tsutsumi, S., Akaike, M., Ushijima, H., & Kato, N. (2007). Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neuroscience Research, 58(2), 149-155.
Zahoor, T., Khan, S., Chinnam, S., Iqbal, T., Hussain, R., Khan, Y., Ullah, H., Daud, S., Rahman, R., Iqbal, R. and Aljowaie, R.M., (2024). A combined in vitro and in silico approach of thiadiazole based Schiff base derivatives as multipotent inhibitor: Synthesis, spectral analysis, antidiabetic and antimicrobial activity. Results in Chemistry, 9, p.101671.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yousaf Khan1*, Abdul Sattar1, Syed Amin Ullah1, Zia-Ur-Rehman2, Hakimullah3, Madeeha Bibi4, Hina Sarfraz1, Anila Mukhtiar1
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under CC BY-NC 4.0